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ABSTRACT

Existing studies show that open source projects may enjoy
high levels of socio-technical congruence despite their open
and distributed character. Such observations are yet to be
confirmed in the case of larger open source ecosystems in
which developers contribute to different projects within the
ecosystem. In this paper, we empirically study the relation-
ships between the developer coordination activities and the
project dependency structure in the Ruby ecosystem. Our
motivation is to verify whether the ecosystem context main-
tains the high socio-technical congruence levels observed in
many smaller scale FLOSS (Free/Libre Open Source Soft-
ware) projects. Our study results show that the collabora-
tion pattern among the developers in Ruby ecosystem is not
necessarily shaped by the communication needs indicated by
the dependencies among the ecosystem projects.

1. INTRODUCTION

A ‘software ecosystem’ has been defined as “a set of busi-
nesses functioning as a unit and interacting with a shared
market for software and services, together with relation-
ships among them. These relationships are frequently un-
derpinned by a common technological platform and operate
through the exchange of information, resources, and arti-
facts” [16]. The technological platform is often a software
system providing various levels of openness for developers
to add applications.
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In the case of FLOSS (Free/Libre Open Source Software)
ecosystems, the software ecosystem is typically organized
into smaller inter-dependent projects attracting a developer
community consisting of a large number of volunteers in ad-
dition to paid developers. Popular examples of such ecosys-
tems include GNOME [11], Eclipse [8], and Ruby [27].

FLOSS ecosystems have been the subject of much socio-
technical research (cf., e.g., [15]) studying the possible re-
lationships between their social domain represented by the
developer community and their technical domain associated
with the software produced. It is in this context that this
paper seeks to explore the mapping between the communi-
cation patterns of the developer community and the archi-
tectural dependencies among the projects within an FLOSS
ecosystem.

In this work, we examine the mapping through the notion of
socio-technical congruence that puts into test a well-known
but insufficiently understood phenomenon known as ‘Con-
way’s Law’ [5]. We present an empirical evaluation of the
law to show to which extent developers’ activities within an
FLOSS ecosystem can be used to approximate dependencies
between the ecosystem projects. As our unit of study, we
use the Ruby FLOSS ecosystem.

The study builds on top of an earlier work where we have
verified Conway’s Law in the context of a single FLOSS
project [32]. Thus the contribution of this work is to take
such empirical evaluation to an ecosystem level that may
consist of thousands of interrelated projects and explore the
extent to which Conway’s law may hold.

The remaining parts of the paper is organized as follows.
Section 2] offers a discussion on the related works to form
the ground for this study. Section [3] introduces a number
of key concepts related to the research questions explored.
Section [4] presents our study design. Results are reported
and discussed in Section Bl Future extension to this work is
presented in brief in Section [f] followed by a discussion on
the possible limitations and threats to validity in Section [7]



Finally, Section [8] concludes the paper.

2. RELATED WORK

In this section we highlight prior work that falls within the
scope of this research.

2.1 Studies on Socio-Technical Congruence

It has been stated that high degree of congruence between
the social and technical domain is a natural consequence and
a desired property for collaborative development activities
12], e.g., software engineering. Such claims have also been ac-
credited in other studies: for instance, studies that identified
that effective Socio-Technical alignment in a project offers
faster completion of modification requests [4] with higher
build success [21] and product quality [1].

On the other hand, lack of socio-technical congruence is of-
ten correlated with lower productivity with increased num-
ber of code changes [3][9] and negative performance level [31]
within the organization. It is, thus, advised to measure con-
gruence to evaluate the actual coordination quality within
the organization [3].

2.2 Studies of OSS Ecosystems

Social interaction in open source software ecosystems, i.e.
the interaction and dependencies among developers, and the
effect it has to the software produced but also to the ecosys-
tem as a whole, is a perspective of software ecosystems that
has been the focus in a number of studies. In this context,
Kabbedijk and Jansen 18] analyze the Ruby Git repository,
graph the developer and gem interaction and define three
developer roles according to their analysis.

Dabbish et al. [6] analyzed “social coding” in GitHub per
se. Their results point to that visible feedback on GitHub
support collaboration and learning.

Scacchi [29] [30] analyses different perspectives of free and
open source software development (FOSSD) underlining the
concept of multi-project (FOSSD) software ecosystem, a set
of different FOSSD projects under the same repository. He
states that software evolution in this kind of ecosystems de-
pends on a number of parameters, people (developers) and
their interaction being one of them. Raj and Srinivasa [19)
analyze the developer contribution in sourceforge.net to re-
veal the tendency of developers to contribute to single projects
in the repository. Jergensen et al. [17] study GNOME devel-
oper participation and showed that the onion model hypoth-
esis of new contributors in FOSSD projects does not apply
to this project. Ververs et al. [33] study how development
activity changes before and after events (e.g. commits) in
the Debian ecosystem and argue that frequent events in the
ecosystems ensure developer commitment.

Moreover, the literature reports on a number of tools for
analyzing open source ecosystems where the analysis mainly
focuses on user interaction and software evolution (23| [24]
12]. Software evolution in ecosystems is also addressed by
Yu et al. [34]. They analyse the evolution of software from
the biological viewpoints: evolution in term of symbiosis and
in terms of Darwinism. Robbes et al. |26], on the other hand,
study the evolution of OSS software in terms of the ripple
effect, i.e. the effects to software when APIs change.

3. DEFINITIONS AND RESEARCH QUES-
TIONS

In this section we define the set of concepts used in this
study.

3.1 Conway’s Law

Conway’s Law, in its purest form, states that “organizations
which design systems are constrained to produce systems
which are copies of the communication structures of these
organizations” [5]. In other words, the software product’s
architecture reflects the organizational structure of its de-
velopment organization [5, 20]. In [13], Conway’s Law is
considered bidirectional and thus claimed to be true in re-
verse as well. This means the organization pattern within
a developer community should reflect the architectural de-
pendencies in the developed software. Thus, Conway’s Law
can effectively be interpreted as a basis for studying the so-
cial and technical interdependency within a software project
125].

3.2 Socio-technical congruence

The recently defined phenomenon of ‘socio-technical con-
gruence’ is an operationalization of Conway’s Law. Socio-
technical congruence can be defined as the match between
the coordination needs established by the technical domain
(i.e., the architectural dependencies in the software) and the
actual coordination activities carried out by project mem-
bers (i.e., within the members of the developer community)
|20]. This coordination need can be determined by analyz-
ing the assignments of persons to a technical entity such as
a source code module, and the technical dependencies can
be analyzed via the technical entities [20]. Accordingly, for
socio-technical congruence to be present, developers within
the community should communicate if there exists a com-
munication need indicated by technical dependencies. For
example, developers working on the same module or on the
interdependent modules should be coordinating.

3.3 Explicit Architecture

In general, the ‘Explicit Architecture’ of a software system is
defined as the system structure as present in technical enti-
ties and dependencies among those technical entities. In our
study, the explicit architecture presents relationship among
the gems in the Ruby ecosystem. A ‘gem’ is a software
package that contains a Ruby application or library. A rela-
tionship in this architecture represents the development and
runtime dependency between two gems.

3.4 Explicit Coordination Network

The ‘Explicit Coordination Network’ is a social network in
which two developers have a relationship if they have direct
communication history, either social or technical. In the case
of Ruby ecosystem, the communication history is deduced
using the communication traces in the issue tracking system
of the GitHub|10] software development hosting site for gems
hosted there.

3.5 Implicit Architecture

The ‘Implicit Architecture’ of a software system is defined by
the elements of the Explicit Architecture and the relation-
ships of the Explicit Coordination Network. More specifi-
cally, in the implicit architecture, we identify a relationship



between two elements (technical entities) if there is direct
communication between any of the developers of the two
elements.

In the Ruby ecosystem study, we define the Implicit Archi-
tecture of the complete Ruby ecosystem. Here, two gems
are related if there are developers who have either (a) con-
tributed to both the gems, or (b) have direct communication
(e.g., one-to-one issue related conversation). For instance,
consider that developer D; has contributed to gems G; and
Gz, and developer D2 has contributed to gem Ggs. Also
consider that both developers have direct communication as
shown in Fig. a). Thus according to the definition, gems
G1, G2 and Gg3 are linked to each other in the Implicit Ar-
chitecture (Fig. [[(b)).

3.6 Research questions
In this work, we study socio-technical congruence in the
Ruby ecosystem by addressing two research questions:

1. Can socio-technical congruence be studied at the ecosys-
tem level so as to yield insight into the social and tech-
nical organization of software ecosystems?

2. To which extent can developer’s interaction within the
Ruby ecosystem approzimate the actual relationship (or
dependencies) among the ecosystem gems?

In order to perform a study as required by Research Ques-

tion [1} data should be available related to inter-developer
communication, developer contribution to the ecosystem projects,
and dependencies between the individual projects. Investi-
gation of Research Question [2| will be done by determining

a socio-technical congruence level.

In order to address these questions, we use social network
analysis techniques to analyze data collected from the
RubyGems.org and GitHub repositories (see Section .

4. STUDY DESIGN

This section presents in detail our study design, covering
discussion on the case study selection, required data sets,
data acquisition, cleaning, and analysis process.

4.1 Case and Subject Selection

We use the Ruby gems ecosystem as a unit of analysis in
order to explore our research questions. The Ruby gems
website, RubyGems.org |28|, hosts packages (“gems”) for
the Ruby programming language. A gem contains code,
documentation, and a specification. For this study, we use
the specification only. Gem developers can create gems and
push these to RubyGems.org while gem users (typically ap-
plication developers) can install gems using RubyGems.org.
Pushing and installing is typically done via the gem com-
mand line tool that interacts with RubyGems.org.

Two properties of RubyGems.org makes it appropriate for
studying socio-technical dependencies in a software ecosys-
tem. First, RubyGems.org is very widely used: on 2014-05-
02 it stated that 3,020,455,028 downloads had been made
of 74,800 gems since July 2009. Secondly, RubyGems.org

makes it possible to couple gems with data on the develop-
ment process since most gems use GitHub|10] as a source
code repository and for collaboration. In our data set (see
Section , 72% of the specifications of gems referenced
GitHub.

4.2 Data Sets

We collect data for i) the Ruby ecosystem architecture and
ii) the Ruby ecosystem coordination network.

To collect data for i), we use the specifications of gems from
RubyGems.org. The specification contains metadata that
include the gem name, dependencies to other gems, and
URIs for the gem. The following listings shows an excerpt
of the aasm gem specification in JSON format. The gem’s
development dependencies (that are needed to further de-
velop the gem) include the mime-types gem (in a version
greater than or equal to 1.25.0 and less than 2.0) and the
rake gem (in any version). The aasm gem has no runtime
dependencies (that are needed to run the gem). Finally, the
gem’s homepage is https://github.com/aasm/aasmn.

{
"name": "aasm",
"info": "AASM is a continuation of the acts as state
machine rails plugin, built for plain Ruby objects

"
L

"dependencies": {
"development": [
{
"name": "mime-types",
"requirements": "~> 1.25"
I
{
"name": "rake",
"requirements": ">= 0"
}
1,
"runtime": []

by
"homepage_uri":"https://github.com/aasm/aasm"

To collect data for ii), we use GitHub. In the example above,
the GitHub project related to the gem can be identified as
aasm (with owner aasm). On GitHub, collaboration is facil-
itated via among others issues and pull requests created by
GitHub users. To, e.g., suggest fixes to aasm, a developer
may create a branch, make modifications, and create a “pull
request” for the aasm members to merge the modifications
into the main aasm repository. For the aasm gem, e.g.,
there were (on 2014-04-28), 119 issues for the aasm. In the
listing below, issue number 62 for aasm shows an example
of two GitHub users collaborating. The issue is created via
a pull request by the user Nitrodist and suggest a “minor
fix” that is closed by the user alto.

{

"number": 62,
"title": "Fix migration example in README",
"user": {
"login": "Nitrodist",
"comments": o
"body": "Minor fix! :heart: ",



(@)

(b)

Figure 1: (a) Explicit Coordination Network with contribution to code base (b) Corresponding Implicit

Architecture

"closed_by": {
"login": "alto",

4.3 Data Collection

Data collection was done in three steps: i) retrieve a list of
gems from RubyGems.org, ii) identify GitHub project for
gems, iii) retrieve issues from GitHub projects.

Regarding i), data was collected from RubyGems.org using
the command line API. Gems starting with the numbers 0
to 9 and ASCII characters a-z were collected using the gem
list command. For example, the command

gem list -r a

retrieves (for the gem tool used in this study), a list of gems
starting with the letter “a”. Using this list, we used the
RubyGems.org HTTP API to fetch specifications of the lat-
est version of the gem. For example, the specification of
the latest version of the aasm gem is available at https://
rubygems.org/api/vl/gems/aasm. jsonl In this way,
we retrieved 60,286 gem specifications on 2013-08-19.

Based on the list of gems, for step ii), we scanned the URIs
of the gem specifications to find GitHub URIs. We assume
that if a URI contains a GitHub URI, it is the URI of
the gem project. We prioritized source_code_uris and
project_uris. We were able to retrieve GitHub issues
(possibly an empty set) from 33,960 GitHub projects in step
iii).

For step iii), we retrieved all open and closed issues and
comments for identified projects using the GitHub API. Be-
cause the GitHub API is rate-limited we retrieved GitHub
data over several days. Since we cannot link gem versions
to GitHub, we assume that the data collected at GitHub
represent the full history of collaboration up until the latest
version of the gem. For 56% of Ruby gems, we could find
GitHub data. For the remaining gems, we were either un-
able to identify a GitHub URL using the method described
above or the gem was not developed using GitHub.

4.4 Data Refining and Structuring
In order to initiate data analysis, we refined and restruc-
tured the collected data as follows: for each Ruby gem for

which we could find GitHub data, a record was created in
JSON format that contains the gem and owner names, the
list of gems it depends on, and pair-wise communication be-
tween developers of the gems. Records created for the gems
were collected in a single JSON file, which contains 42,803
gem records. The following listings shows the record format
taking the rumember gem as an example.

{
"gem_name": "rumember",
"github_owner": "tpope",

"dependencies": [
"json",
"launchy",
"rspec"

1,

"relationships": [
[
"mofus",
"tpope"
I
[
"kevincolyar",
"tpope"
I

In this listing, the Ruby gem rumember is owned by tpope.
The gem has dependencies to three other gems, namely,
json, launchy, spec, denoted by the dependencies struc-

ture. Pair-wise developer login names presented in relationships

structure shows their communication. For instance, the de-
veloper mofus has communicated with tpope.

Among the 42,803 Ruby gem records listed in the JSON
file, 12,520 Ruby gem records had developer communication
records in GitHub. Thus, for further analysis, we restricted
the data set to 12,520 Ruby gem records.

4.5 Data Analysis

This section is focused on topics related to construction of
the architectures (both explicit and implicit), explicit coor-
dination network and their use in measuring socio-technical
congruence utilizing the data presented in Section 4]

Ezxplicit Architecture: The Explicit Architecture shows
relationships among the gems. Relationships were gener-
ated based on the development and runtime dependencies
that exists between Ruby gems (presented in Section
and . At implementation level, this architecture is gen-
erated by creating edges between a gem and gems to which
it has dependency by utilizing the dependency list of that
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gem. For instance, Figure a) presents an Explicit Archi-
tecture that corresponds to the dependency record presented
in Section for the gem rumember. The complete archi-
tecture consists of 141,029 edges among the 12,520 gems,
edge weights of which ranges between 1 and 33. A partial
snapshot of this architecture is shown in Figure b).

Explicit Coordination Network: Following the definition
in Section [3:4] the Explicit Coordination Network was de-
rived among the developers contributing to the gems. At im-
plementation level, an edge is created between each pair of
developer names listed in the gem records presented in Sec-
tion For instance, Figure a) presents an Explicit Co-
ordination Network that corresponds to the developer rela-
tionships present in the relationship structure for the record
of the gem rumember. The complete network consists of
186,136 edges among the 55,454 developers, edge weights of
which ranges between 1 and 46. A partial snapshot of this
network is shown in Figure [3|(b).

Implicit Architecture: The Implicit Architecture was gen-
erated following the definition in Section|3.5| For doing this,
we restricted the edge weight of the Explicit Coordination
Network to > 2. This is done because an edge weight of 1
in this network represents only one instance of interaction
between two developers, which is insignificant to consider
it as a collaboration between developers. This filtering re-
duces the size of Explicit Coordination Network to 59,562
edges. Furthermore, we generated seven Implicit Architec-
tures based on seven edge weight thresholds of the Explicit
Coordination Network. This weight categorization of the
coordination network is shown in the second column of Ta-
ble [1] and the size of corresponding Implicit Architecture
is presented in column 4. This categorization was done to
comprehend how congruence values change with the changes
in coordination strength seen in Explicit Coordination Net-
work.

Measuring Congruence: Congruence was measured fol-
lowing the similarity measure presented in equation (1). This
measure is analogous to fit / congruence measure used in or-
ganizational theory method [4], and already been applied in
[32] for measuring congruence in FreeBSD project.

|Refa () Analogous 4|
|Refal

Congruence = x 100 (1)

In the above equation, Refa is the reference architecture
(either explicit or implicit), and Analogouss it the anal-
ogous architecture (either explicit or implicit) with which
congruence will be measured.

This equation measures congruence between the two archi-
tectures with respect to the reference one, Refa. Therefore,
the numerator of equation (1) identifies the commonalities
between the two given architectures, then divided by the size
of the reference architecture and expressed as a percentage.

As an illustration, consider the explicit architecture pre-
sented in Figure E| and the implicit architecture shown in
Figure b). A congruence measure between the two using
equation (1), would be as follows,

Congruence
_ Bgi-g3,Bgi-c4lN[Ec1-G2,Bc1-G3,Fc2- g3l % 100
[[Ec1-as.Ea1—a4l|

= £ x 100

= 50%

Here, the explicit architecture is taken as the Refa and the
implicit architecture is considered as the Analogousa.

Additionally, it should be notated that the congruence would
be 0% if developers that communicated in one project G1
never communicated with people in G3 and G4 and 100% if
people from G1 also communicated in with people commu-
nicating in G3 and G2.

To compute socio-technical congruence using the similarity
measure in (1), following approach was applied: the explicit
architecture was taken as the reference architecture (Refa)
and the implicit one was taken as the analogous architecture
(Analogousa). The intersection operation in numerator was
carried out between the explicit architecture and each of the
7 implicit architectures that were generated for the 7 weight
categories in explicit coordination network. This operation
identifies the number of edges (or relationships) that are
identical for both the architectures. Result of this process
is presented in column 5 of Table [[] Therefore, this mea-
sure illustrates verification of Conway’s law, that reveals the
match between the dependency among the Ruby gems and
the gems dependency produced due to the communication
and collaboration structure of the developers.

Then to identify the extent to which the implicit architec-
tures approximate the explicit, we calculated the similarity
measure in (1). The resulted congruence measures are pre-
sented in column 6 of Table [Il

S. RESULT ANALYSIS

In this section we investigate the research questions primar-
ily based on the data analysis presented in Section [

5.1 Social and Technical Dependencies in the
Ruby Ecosystem

Socio-technical congruence has often been studied within
a project to determine coordination quality and its conse-
quences. Such studies make sense, because, a project often
organizes itself around the product’s architecture. In this
setup, the main components of the product define the orga-
nization’s key subtasks [14] and become the source of most
relevant information pertinent to the task dependencies that
define coordination needs among the developers [7].

However, the term ’software ecosystem’ is used in FLOSS
software to refer to a collection of software projects that
are developed and evolve together in the same environment
[22]. Thus, initiating the study of socio-technical congru-
ence within an ecosystem, can only be feasible if the projects
within that ecosystem have dependencies and cooperation,
both from technical and social perspectives. In other words,
projects should have technical dependencies among them,
while the developers working on those projects have com-
munication and collaboration.

This verification in the case of the Ruby ecosystem was done
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by examining the explicit architecture and the explicit coor-
dination network. The explicit architecture reveals 141,029
edges among the 12,520 gems. Each edge in this architecture
shows either development or runtime dependency between
two gems. Similarly, the explicit coordination network gen-
erates 186,136 number of relationship edges among 55,454
developers. Each edge in this network shows communica-
tion between two developers as shown in the GitHub issue
tracking system. This quantity of relationships among the
projects, both from social and technical domains, sets the
ground for socio-technical congruence analysis in the Ruby
ecosystem.

5.2 Socio-Technical Congruence in the Ruby

Ecosystem
Results obtained from the socio-technical congruence anal-
ysis carried out for Ruby gems ecosystem are reported in
Table[Il Observed results positioned this study to offer the
following insights:

The congruence measure, as a whole, is low for all the seven
edge weight categories of the explicit coordination network,
as shown in the trend chart in Figure This chart plots the
congruence measure against the edge weight limit of the co-
ordination network. According to this chart, for edge weight
> 2, the congruence measure is 76.2%, which drops sharply
with the increasing edge weight limit. For instance, congru-
ence value drops to 46.3% for edge weight > 8, which goes
down as low as 36.1% for weight > 19.

As explained in Section [3-4] the edge weight in the explicit
coordination network measures the strength of collaboration

Congruence measure in Ruby gems
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Figure 5: Socio-Technical Congruence in Ruby
Ecosystem

among the developers. Thus, communication and collabo-
ration get strongly tied with the increased edge weight in
this network. The stated congruence measure, in this con-
nection, shows that congruence measure decreases with the
increased developer collaboration. This observation led us
to infer that

The collaboration pattern among the developers in Ruby ecosys-

tem is not necessarily shaped by the communication needs
indicated by dependencies among the gems.

The following explanations can be offered in support to this
inference. Interdependency among projects in an ecosystem
often exist at a higher abstraction level and may be decou-
pled in general. For instance, in the case of the Ruby ecosys-



Table 1: Socio-Technical Congruence in Ruby Ecosystem

Constraints Edge count of the Architectures Congruence

No of | Weight limit | Explicit Ar- | Implicit Ar- | Intersection count | Congruence
Gems for Explicit | chitecture chitecture (Refa N Analogousa)| ( Refs N Analogousa o 100)
Selected Coordination | (Refa) (Analogous 4) [Fefal

Network
12,520 >2 28,361 10,472,491 21,604 76.2

> 8 28,361 3,283,494 13,121 46.3

>9 28,361 2,765,429 12,269 43.3

>10 28,361 2,448,552 1,737 T4

> 12 28,361 2,283,553 11,488 40.6

> 14 28,361 1,948,130 10,613 37.5

> 19 28,361 1,843,492 10,211 36.1

tem, the gems’ dependencies are due to development and
runtime dependencies. A development dependency defines
a gem that is necessary at development time for further de-
velopment, whereas a runtime dependency represents a gem
that is necessary at runtime. Therefore, such dependencies
can not define the concrete task dependencies at the devel-
opment level that could necessarily devise the coordination
needs among developers responsible for those tasks. It is
thus possible that the developers who have extensive col-
laboration (as seen in the Explicit Coordination Network)
belong to the same gem or related gems that have depen-
dency at development level. For instance, the Explicit Coor-
dination Network that have edge weight > 19 contains 362
developers. Around 79% of these developers (285 developers
out of 362) works for the same gem jdbc-jtds. Therefore,
it is obvious that these 285 developers should have exten-
sive communication and collaboration, as their development
tasks are bound to have technical dependencies. Thus strong
socio-technical congruence, as proposed by [21], might im-
ply better coordination among the developers, which can
give ground to better support the management of change
and maintenance of quality.

However, Socio-Technical congruence within an FLOSS project

have already been measured in [32]. In this paper, Socio-
Technical congruence has been measured using equation (1)
during the entire lifespan of the FreeBSD project. The
reported results identify that congruence is higher in the
FreeBSD project which has a stable evolution history for
the last seven stable releases of the project. This indicates
that the collaboration pattern of the FreeBSD developers are
due to the communication need established by the dependen-
cies within the software components that are contributed by
them. We argue that similar congruence measure may be
seen for a gem (e.g., jdbc-jtds) in the Ruby ecosystem.

In summary, this discussion lead us to conclude that strong
socio-technical congruence exists among developers within a
project, which, however, decreases significantly at ecosystem
level.

6. FUTURE WORK

Further study in relation to socio-technical dependency at
ecosystem level could fork in several directions. One way to
extend the work is to examine socio-technical congruence at
different abstraction levels of an ecosystem. For instance,
initiating the study for individual project, project clusters
that are tightly connected, and the whole ecosystem for a
given period of evolution. This would result deeper insight

and comprehensive understanding on the topic.

Additionally, a statistical analysis need to be performed in
devising the significance of the congruence measure to that
of the success factors (e.g., quality, sustainability) at differ-
ent abstraction level of the ecosystem.

7. THREATS TO VALIDITY

The following aspects have been identified which could lead
to threats to validity of this study.

Ezxternal validity (how results can be generalized): This pa-
per reoports on an empirical study of the Conway’s Law on
an ecosystem level. Our empirical data is collected from the
Ruby ecosystem, where we apply the theory. The fact that
we only study the Ruby ecosystem and that this is the only
study of the Conway’s Law at an ecosystem level, at least to
our knowledge, makes it unclear to which our results can be
generalised. Our study intends to trigger additional stud-
ies of this kind, in different ecosystems, in order to reach
conclusions that can be generalised.

Internal validity (confounding factors that can influence the
findings): When examining the empirical data of our study,
we note that we could only retrieve the GitHub issues for
56% of the total Ruby gems, although 72% of the gem spec-
ifications referenced GitHub, and we successfully extracted
the issues of a total of 33,960 GitHub gems. This is either
because our method was unable to identify a valid GitHub
URL or the gems were not developed using GitHub. The
high number of unidentified issues can pose threats to the
validity of the study.

Construct validity (relationship between theory and observa-
tion): Among the identified GitHub gems, we limited our
study to 12,520 gems, as only for those gems we were able
to identify developer communication data. The reasoning
here is that implicit architecture that was generated based
on explicit coordination network, would only contain rela-
tionships among these 12,520 projects. Thus considering the
whole population of gems our current approach may lead to
biased observation. This might pose threats to construct
validity of this study.

8. CONCLUSIONS

In this paper, we studied the socio-technical congruence,
and the significance of Conway’s Law, in the context of the
Ruby FLOSS ecosystem. Our study shows that the con-
gruence measure in Ruby is relatively low, which indicates



that the collaboration pattern among the developers in the
Ruby ecosystem is not necessarily shaped by the communi-
cation needs indicated by the dependencies among its ecosys-
tem projects. In contrast, the individual ecosystem projects
themselves have higher levels of congruence.

Our findings can be explained by the fact that developers
often communicate with peers involved in the same projects,
which offer a narrow enough context for collaboration. In the
case of Ruby, the ecosystem level turns out be too broad for
such communication activities. From an ecosystem health
perspective, a low congruence level could mean that devel-
opers might be unaware of important project dependencies
or might have missed opportunities to collaborate with other
relevant ecosystem developers.
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