Filling the Gaps of Development Logs and Bug Issue Data

Bilyaminu Auwal Romo

Andrea Capiluppi

Tracy Hall

Department of Information Systems and Computing
Brunel University
London, United Kingdom

{bilyaminu.auwal,andrea.capiluppi,tracy.hall}@brunel.ac.uk

ABSTRACT

It has been suggested that the data from bug repositories is
not always in sync or complete compared to the logs detail-
ing the actions of developers on source code.

In this paper, we trace two sources of information relative
to software bugs: the change logs of the actions of developers
and the issues reported as bugs. The aim is to identify
and quantify the discrepancies between the two sources in
recording and storing the developer logs relative to bugs.

Focussing on the databases produced by two mining soft-
ware repository tools, CVSAnalY and Bicho, we use part of
the SZZ algorithm to identify bugs and to compare how the
”defects-fixing changes” are recorded in the two databases.
We use a working example to show how to do so.

The results indicate that there is a significant amount
of information, not in sync when tracing bugs in the two
databases. We, therefore, propose an automatic approach
to re-align the two databases, so that the collected informa-
tion is mirrored and in sync.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

Keywords

Bug traceability, bug-fixing commits

1. INTRODUCTION

The integration of different tools for software development
is problematic when the tools, that should track comple-
mentary artefacts, loose consistency in the recording of the
events. One such example is the traceability of bugs in
the development logs: when bugs are discovered, develop-
ers should mention their existence in the development logs.
Likewise, they should open the appropriate procedure in the
issue tracker, marking it as “open”; similarly, when a bug has
been fixed, the developers should mention its “fixed” status

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM or the author
must behonored. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

OpenSym 2014, Aug 27-29, 2014, Berlin, Germany.

Copyright 2014 ACM 978-1-4503-3016-9/14/08...$15.00.
http://dx.doi.org/10.1145/2641580.2641592

in the development logs and mark it as “closed” in the issue
tracker.

Past research has established that there is inconsistency in
how bugs are reported, when analysing the issue tracker and
the development logs of a software project [1]. It has serious
consequences: by considering only certain bug-fixing com-
mits for automated (e.g., prediction) algorithms, researchers
might obtain a skewed set of data, and produce a model that
might be severely biased by how developers recorded their
actions.

Integrating and syncing issue trackers and development
logs becomes of paramount importance, especially in open
source software projects. Furthemore, information is limited
in distributed development since shared meetings to track
the issues of the project are not general. In the context of
open source projects, developers and testers consider such
tools as a medium of communication and collaboration in
the project community [3].

In this paper, two different tools for mining software repos-
itories were considered: the issue-tracker parser Bicho and
the development log parser CVSAnalY, to extract and store
the data relative to the issues recorded for the project, and
the development logs of a project, respectively [4, 6]. Our
current data-set is a sample of 664 projects extracted from
the GitHub development platform: for each project, we ex-
tracted and stored the development logs and the issues (i.e.,
bugs) recorded by the developers throughout the evolution
of the source code.

The Bicho and CVSAnalY tools do not interact with each
other, but run independently, produce independent reports,
and fill in different databases [5]. Such reports are widely
used in empirical software engineering. Therefore, automati-
zation and completion of missing bug data become of critical
importance [2]. Specifically in the bug-tracking case, devel-
opers are expected to record how, when, where and by whom
bugs are fixed. Thus, the first objective of this study is to
assess how the two generated databases differ when consider-
ing the bugs that affect the system under study; the second
is to evaluate if we can fill the localised, missing data in
either database in an automated way. As a result, the eval-
uation is based on the entities that exist in either database,
and that could be used to re-align the entities mentioned in
the databases created by Bicho and CVSAnalY.

Given the objectives above, this paper proposes an auto-
mated way to fill the gaps that are observed in databases
that record bugs of a software system. We detail the steps
performed to extract bug data using one of the projects in
our collected sample to illustrate this process (Section 2).

Then, we provide the results of integrating two sources of
data (Bicho and CVSAnalY) in order to create a complete
picture of the number of bugs reported in an example open
source project (Section 3). After this, we introduce an au-
tomated approach to complete any gaps identified on either
database, by using the correspondence of data in different
tables (Section 4). Finally, we highlight the related work,
and how our approach advances the state of the art (Sec-
tion 5), and we propose the future steps of this research
alongside the conclusion to this work (Section 6).

2. WORKED EXAMPLE

In this section, we use an example project to illustrate
the problem that we observed when analysing most of the
projects sampled from GitHub. This section presents the

data that can be obtained when analysing the brackets project,

a “code editor for the web”.! Brackets is a large JavaScript
project, with around 300kLOC of source code in the main
development trunk. In this project, there are over 180 con-
tributors to the code. The overall number of commits ex-
ceeds 10,000 and several releases have been published. Ob-
taining and cleaning the data used in this study was per-
formed through sequential steps, as detailed below.

2.1 Development Logs — CVSAnalY

The first step was to store the development logs via the
CVSAnalY toolset [6]. Among the tables generated by the
tool, we specifically queried scmlog, which holds the number
and unique IDs of changes in the version control system,
the identity of developers who perform these changes and
the comment message describing the changes applied to the
code. The right-hand side of Figure 1 shows the composition
of the CVSAnalY table that was used for the extraction of
the information referring to bugs.

Bicho (issues table) CVSAnalY (scmlog table)

Column Type Column Type

id int id int
tracker_id int rev mediumtext
issue varchar committer_id | int

fype yarchar author_id int
summary varchar | date datetime
[aescripuon et | | | datetime __|
status varchar message longtext
resolution varchar COMposeEg_Tev | o

priority varchar repository_id [int

submitted_by | int unsigned
submitted_on | datetime
assigned_to |int unsigned

Figure 1: Corresponding fields linked in Bicho and
CVSAnalY

2.2 Issue Tracker Data — Bicho

The second in our data preparation process was to obtain,
and store in a separate database all bugs reported for the
same system, using the Bicho toolset [4].> Bicho retrieves
all data regarding issues reported by users of a project, and
confirmed as such by developers. One of the tables created

is the issues table, where the status (“open”, “closed”.), or

"https://github.com/adobe/brackets

2The tracker for the issues of the brackets project can be
found at the URL https://api.github.com/repos/adobe/
brackets/issues.

the message accompanying the entry is stored and imported
for publication by the relative GitHub tracker.

Figure 1 shows how the two databases are linked: bug
IDs were searched and compared in the “summary” field of
the issues table of Bicho, and in the “message” field of the
scmlog table, in CVSAnalY. Discrepancies or commonalities
were flagged and summarised in a Venn diagram.

2.3 Locating Bug Data — SZZ algorithm

The third step involves the logic of how to retrieve bugs:
we plan to implement the full SZZ algorithm [8], but in this
example we perform it only partially. In its formulation, the
algorithm should look for the terms "Bugs,” or "Fixed” (case-
insensitive) in message logs, along with the '#’ sign, that
shows the ID of a bug. In the example below, we show how
to find and clean the bugs that have been addressed both in
CVSAnalY and Bicho, by issuing a number preceded by a

4’ sign.

e For the bugs in the Bicho dataset, we queried the issues
table and extracted all the "summary” fields if they
contained a # sign followed by a number: a typical re-
sult in this case would be [PM] Fix #3057: Toggle
Block Comment doesn’t
work if the open/close delimiters are the same.
This message of course signals that the bug with ID
#3507 was fixed, with additional information on what
was done.

e In order to track messages recorded as dealing with
bugs in the version control system, we queried the
scmlog table, and specifically the "message” field. We
check whether this field contains a reference with a #
sign. Looking for the #3057 bug, the only informa-
tion found in the scmlog table reads as Merge pull
request #3507 from adobe/
jasonsanjose/getting-started-fr. The ID of this
bug should return development information in scmlog
referring to the actual bug in the issue tracking system.
Instead, the information refers to a request to merge
some changes in the distributed version control sys-
tem. We marked these occurrences as "false positives,”
and excluded them from the study.

2.4 Data Cleaning: False Positives and True
Positives

The fourth step was the cleaning and storage of bug IDs
for both CVSAnalY and Bicho. The query for the '#’ sign
followed by numeric values in development log imported
with CVSAnalY produces a large number of false positives.
In the case of the brackets project, over 2,000 messages re-
fer to the pattern searched through the # sign, but they
are all linked to a request of pulling a merge from another
distributed repository into the original one under GitHub.
These were filtered out automatically. After discarding these
false positives, we obtained a set of 366 bug IDs that are
mentioned in the CVSAnalY messages, and another set of
349 bug IDs that are mentioned in the issue tracker by Bi-
cho.

In addition, the traditional heuristic developers leave hints
or links about bug fixes in change logs was used to produce
a link between bugs/issues and logs in both tools, as this is
widely used to mark bug fixes [10]. In our case, we specif-

ically focused on quantifying the bugs/issues, and the logs
in Bicho and CVSAnalY that are not linked to bug fixes.

Finally, we manually analysed each of the remaining bugs
in both databases, to make sure that each of the remaining
IDs pointed to real bugs.

3. RESULTS

This section details the results of our approach on brackets
project in our sample (subsection 3.1).

3.1 Results — brackets Project

The results of the analysis of bugs in the brackets project,
when identified with the # sign, are visualised in the Venn
diagram of Figure 2.

Figure 2: Intersection of the sets of IDs

As visible, the number of bug IDs that were found in both
CVSAnalY and Bicho is around 1/3 (i.e., 167 bugs IDs, that
represents the intersection of the sets in the Venn diagram)
of the total number (i.e., 547, the union of all the sets in
the diagram). Another 1/3 of the bug IDs are only found in
Bicho, while the rest of bug IDs are reported and found in
CVSAnalY, but never summarised into issues retrieved by
Bicho.

This result varies across projects, depending on the style
of how the information on issues is handled by developers,
and it only refers to how developers refer to bug IDs. We
did not infer any information on whether the bug was fixed,
or opened: we just investigated the presence of the bug IDs
in the two databases. This is because our aim was to iden-
tify and quantify discrepancies between the two sources in
recording and to developer information relative to bugs. In
the next section we explore the possibility of filling the miss-
ing data from one database to the other, by means of the
entries of either database.

4. AUTOMATING THE INTEGRATION OF
MISSING DATA

Observing the tables of Bicho and CVSAnalY (displayed
in Figure 1) and their attributes, we propose to use bug-
related data in either database to fill the missing data as de-
tected in the other database. For instance, the 198 bug IDs
and attributes stored by CVSAnalY (but not found by Bi-
cho) could be used to fill the summary and other attributes
in the Bicho database. In consequence, automating the inte-
gration of Bicho and CVSAnalY will involve a series of steps
such as Pre-processing, Analysing and Post-processing [4].
These steps can be further subdivided as outlined below:

1. For every project, retrieve the bug data on develop-
ment logs and tracker issues from the scmlog and issues
tables, as linked aboved in Figure 1. In the case of
the GitHub repository, this process is automatable by
replacing with the name of the project in the https:
//api.github.com/repos/adobe//issues URL to re-
trieve the issue tracker data; and replacing with the
name of the project in the https://github.com/adobe/
URL to retrieve the development logs.

2. Once obtained and stored the data in the two databases,
apply the SZZ algorithm to identify the missing bug
data in the scmlog table of CVSAnalY and issues ta-
ble of Bicho viceversa. In our case, we found 198 miss-
ing bug IDs in the issue archives, but present in the
CVSAnalY database; we also found 182 bug IDs in
the Bicho database, but not present in the CVSAnalY
database.

3. Using a matching algorithm, produce a joint list of
bug IDs, and classify them in “missing from the Bicho
database”, “missing from the CVSAnalY database”, or
“present in both”.

4. In the cases where one bug ID is missing from either
database, we propose to use the data found in the other
database, to fill in the missing data of that ID au-
tomatically. For instance, let’s assume that ID #45
was found only in the CVSAnalY database, but not in
the Bicho database. The “message” field in the CVS-
AnalY database could be used to automatically fill the
“summary” field of the Bicho database. Similarly, the
"Id” of the CVSAnalY database could be used as the
”Id” of the Bicho database. "Committer_id” from the
CVSAnalY database could be used to fill in the "As-
signed_to” attribute in Bicho, and so on.

5. The item that must be carefully linked between the two
databases is the project ID: since the two databases
are distinct, it is likely that the Repository_id sequen-
tially stored by CVSAnalY will be different from to
the Tracker_id (also sequentially) stored by Bicho. In
the brackets case, CVSAnalY stored the log data in
our database with a Repository_id=346, while Bicho
stored the issues for the same project with a Tracker_id
= 60. An extra table has to be created to automati-
cally link the two IDs in the databases.

Bicho (issues table)

CVSAnalY (scmlog table)

——>1a |Int

Id Int

Tracker_id Int S| Repository_id ‘ Int
Submitted by ' Intunsigned » Authorid | Int
Assigned_to | Intunsigned @i Committer_id ‘ Int
Submitted_on | dataTime ey | date ‘ dateTime
Issue varchar | ReV ‘ mediumText
Summary varchar -~ » | Messag ‘ longText

Figure 3: Corresponding fields linked in Bicho and
CVSAnalY

All the fields of CVSAnalY or Bicho from the above Fig-
ure 1 have been mapped to link the corresponding attributes

in both tools. Figure 3 above shows the corresponding fields
that have been linked to fill up the missing bug data in either
database.

S. RELATED WORK

In this section, we report the related work regarding the
tools that trace the bug-fixing commits to the bug traces
in the issue trackers. We also report the related work that
developed methods to retrieve bug-related data.

The Linkster tool involves a series of steps to retrieve,
parse as well as convert and link the data sources [1]. As a
result, it requires significant manual effort to analyse recov-
ered links which might be much more accurate. On the other
hand, RELINK [10] collects information automatically from
the source code repository and bug tracking system, builds
the resulting information linked between bugs/issues or logs
and output the identified links. In general, both these tools
require a large amount of interaction but they recover miss-
ing logs and bugs/issues accurately. Our approach completes
these tools by filling the missing data in either database in
an automatic way.

Regarding the approaches for mining bug-related data,
the SZZ is one of the most used algorithms to look for bug-
fixing commits, with a set of simple rules [8]. A recent study
by Shepperd et al. [7] contributes a significant and more
appropriate way to clean bug-related data sets for empirical
research applied to the NASA case study.

The study in [9] applies a formal mathematical model to
automate the process of identifying missing links between
bug-fixing commits in development logs and their associ-
ated bug reports. The model is effective in recovering such
missing links: what we propose here is to use the identified
discrepancies to fill up the development logs or tracker issues
when missing links have not been synced.

6. CONCLUSION AND FUTURE WORK

This short paper presented a procedure to automatically
fill the gaps discovered in either the development logs or the
issue trackers of software projects. We showed that such
an approach was completely automated, when partially im-
plementing a well-known algorithm to isolate the bug-fixing
commits (i.e., the SZZ algorithm [8]. As a future work, we
plan to expand this study significantly: we have extracted
development logs and lists of issues from over 600 projects
randomly chosen in the GitHub repository, and we plan to
integrate the same approach in that sample to test the scal-
ability of our approach. One aspect that we also plan to
further investigate is related to the patterns and sequences
of events. Some developers might be more reluctant to fill
the information on either database, whereas other develop-
ers might be posting on the change log first, and then fill in
the issue tracker later on.

7. AKNOWLEDGMENTS

We would like to thank Dr. Felipe Ortega for his feedback
on an earlier version of the paper and for the constructive
comments.

8. REFERENCES

[1] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein.
Linkster: enabling efficient manual inspection and

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

annotation of mined data. In Proceedings of the
eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pages
369-370. ACM, 2010.

T. Hall, S. Beecham, D. Bowes, D. Gray, and

S. Counsell. A systematic literature review on fault
prediction performance in software engineering.
Software Engineering, IEEE Transactions on,
38(6):1276-1304, 2012.

H. Hayashi, A. Thara, A. Monden, and K.-i.
Matsumoto. Why is collaboration needed in oss
projects? a case study of eclipse project. In
Proceedings of the 2013 International Workshop on
Social Software Engineering, pages 17-20. ACM, 2013.
I. Herraiz, D. Izquierdo-Cortazar, F. Rivas-Hernandez,
J. Gonzalez-Barahona, G. Robles,

S. Duenas-Dominguez, C. Garcia-Campos, J. F. Gato,
and L. Tovar. Flossmetrics: Free/libre/open source
software metrics. In Software Maintenance and
Reengineering, 2009. CSMR’09. 13th European
Conference on, pages 281-284. IEEE, 2009.

M. Legenhausen, S. Pielicke, J. Ruhmkorf, H. Wendel,
and A. Schreiber. Repoguard: a framework for
integration of development tools with source code
repositories. In Global Software Engineering, 2009.
ICGSE 2009. Fourth IEEE International Conference
on, pages 328-331. IEEE, 2009.

G. Robles, S. Koch, and J. M. Gonzélez-Barahona.
Remote analysis and measurement of libre software
systems by means of the cvsanaly tool. 2004.

M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data
quality: Some comments on the nasa software defect
data sets. 2013.

J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? ACM SIGSOFT Software
Engineering Notes, 30(4):1-5, 2005.

A. Sureka, S. Lal, and L. Agarwal. Applying
fellegi-sunter (fs) model for traceability link recovery
between bug databases and version archives. In
Software Engineering Conference (APSEC), 2011 18th
Asia Pacific, pages 146-153. IEEE, 2011.

R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink:
recovering links between bugs and changes. In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European conference on Foundations of
Software Engineering, pages 15-25. ACM, 2011.

