
 

Impact of Collaboration on Structural Software Quality 

ABSTRACT 

The structural quality of a codebase is a key determining factor in 

the software’s total cost of ownership, yet it is notoriously 

difficult to measure or predict. In this doctoral research we 

leverage the power of open source repositories to understand the 

factors that influence structural quality (and by extension fault-

proneness) in the context of the patterns of collaborative 

behaviour exhibited by contributors. The objective is to further 

our understanding of how such behaviour impacts structural 

quality with the end goal being to inform management decision 

making across the industry in the pursuit of better software 

engineering practices. 

1. INTRODUCTION 
A software metric is the quantitative measure of the degree to 

which a component, system, or process possesses a given 

characteristic or attribute. Software metrics embody an empirical 

approach to software engineering and are primarily designed to 

assist in making assessments of software artifacts and 

development processes, in the process guiding engineers and 

project managers in their decision making. If used appropriately, 

software metrics can lead to a significant reduction in costs of the 

overall implementation and maintenance of the final software 

product. 

The research community is highly active in the field of software 

metrics, awash with publications covering topics as diverse as the 

usage of existing ‘classical’ metrics, the formulation of new 

metrics, through to various metric-based process models. 

Despite this, metrics adoption has remained on the margins of 

software engineering [1]. We propose that we can effectively 

leverage the wealth of empirical models and raw data to 

establishing ‘simple truths’ (for example ‘more authors do not 

impact structural quality’) to inform management decision 

making and bridge the gap between the excellent academic work 

in this field and the software engineering industry. 

2. RELATED WORK 

2.1 Software metrics 

The study and application of software metrics dates back to the 

mid-1960’s when the primitive Lines of Code metric was 

routinely used as the basis for measuring software development 

productivity (developer LoC per month) and quality (defects per 

KLoC). In 1971 Akiyama proposed the use of metrics for software 

quality prediction proposing a regression-based model for module 

defect density (number of defects per line of code) where line of 

code was used as a crude indicator of complexity – an early 

attempt to extract an objective measure of software quality 

through the analysis of observables of the system.  

With the increasing adoption of Object-Oriented (OO) 

programming languages in the nineties, research in software 

metrics took a significant step forward. Chidamber and Kemerer 

argued that Object-Orientation, as the most prominent advance in 

software development, and with yet to be established practices, 

necessitated measures that could guide organizations to its 

successful adoption. This fact, coupled with criticisms of existing 

metrics suites, saw the development of the Chidamber and 

Kemerer (CK) metrics suite [2]. 

2.2 Predication Models 

In 1993 Li and Henry performed a statistical analysis on two 

commercial software systems using a regression model to prove 

that metrics (including the CK metrics suite) can be used as a 

predictor of maintainability (as defined as the number of changed 

lines in a class in its maintenance history). [3] 

Basili et al, motivated by the desire to leverage software metrics to 

provide guidance to the areas of a system where testing efforts are 

best spent, built on Li and Henry’s research to establish the utility 

of the Chidamber and Kemerer software metrics suite to as a 

predicator of fault prone software classes. This was achieved 

through the diligent assembling of eight software development 

teams and a thorough regression analysis to establish relationships 

between OO metrics and observed defects. [4]. Many more such 

studies were to follow. 

2.3 Metrics – Collaborations and other 

Impacting factors 

One of the elements to the software development methodology is 

its approach to collaboration. There is a dearth of solid empirical 

studies assessing the impact of collaborative software 

development on structural code quality, there have been some 

attempts to do just that - albeit, again with contradicting results 

[5] [6]. 

Assessment of the impact on pair programming, for example, is  

fairly disjointed, often contradictory, and in many cases rely 

heavily on anecdotal evidence. Williams et al find that the 

collaborative pair programming approach yields favourable results 

when compared with solo development - as manifested through 

lower defect counts [7]. Conversely, Hulkko and Abrahamsson  

find that pair programming results in lower adherence to coding 

standards and has no impact on defect densities [8]. 

3. RESEARCH PROBLEM 

3.1 Collaborative Contributor Behaviour 

Across Open Source Repositories 
We are interested in furthering our understanding around patterns 

of contributor participation within an Open Source community. In 

particular, we are looking to understand the proportion of projects 

with a single contributor versus multiple contributors, 

understanding how likely contributors are to encounter one 

another in future projects, and the factors that cause these 

partnerships to repeat (e.g. the same programming language or 

category of project).  

 

This research differs from the vast majority of Open Source 

community studies by virtue of the fact that we wish to study 

traversal of users throughout an entire open source community. 

This means that data must be gathered for every single project 

within that community. This has implications for data storage 

format and speed of execution. Furthermore, different repository 

types (e.g. SubVersion, Mercurial, and GIT) introduces an 

additional level of complexity. 



 

3.2 Effect of Collaboration on the Structural 

Quality of a Codebase  
The second key area of interest in this research is the impact that 

collaboration can have on the structural quality of a codebase. 

Project teams usually comprise of several developers which 

contribute to a single set of source files – indeed it is not 

uncommon for several developers to collaborate on a single 

source file. In fact virtually all source control systems have been 

developed with conflict resolution features to facilitate multiple 

and simultaneous contributions to a single source file. Our interest 

lies in how multiple authors can affect the structural quality of a 

codebase. 

Second, third, or fourth developers (or collaborators) modifying 

an existing class file may not be as fully acquainted as the original 

author with the current functionality in a class, its hierarchy, or 

common utility classes. This may lead to additional complexity 

over and above what may be necessary for the functional change 

required. Furthermore, additional developers may not possess the 

same level of ownership as the original author, again leading to 

unnecessary complexity and a consequent degradation in quality. 

Conversely collaborators also offer an opportunity for the project 

to benefit from additional experience and expertise which may 

cast a fresh perspective, or indeed a critical eye, on the codebase – 

refactoring where necessary and reducing complexity.  

Without studying a statistically significant sample of projects, it is 

difficult to ascertain which of these competing influences would 

be dominant one affecting the progression of complexity metrics 

throughout the evolution of projects. 

 

3.3 Predictive Models  
The third key aspect of this research is intrinsically related to the 

first and second points – namely to derive, from our 

understanding of the effect of collaboration on the structural 

quality, a mathematical model which predicts aspects of structural 

quality based on key factors such as contributor count or the 

number of revisions in   project.  

 

4. PROGRESS 
At the outset of this research, it was necessary to select an open 

source community to be the focus of our studies. GoogleCode was 

selected for its popularity and high level of Java adoption rates. It 

was considered that Java projects would be the most preferable to 

study due to a number of reasons including highly OO nature, 

wealth of analysis tools and relevance to practitioners. The 

popular metrics suite proposed by Chidamber and Kemerer is both 

well understood and has a significant supporting body of research 

and was chosen to measure structural quality across codebases. A 

comprehensive tool-chain was developed, as outlined in figure 1, 

to extract and analyse the data pertinent to this resesarch.  

5. EXPECTIONS OF CONFERENCE 
A vast amount of data has been extracted and a significant amount 

of analysis has been conducted, leading to some very interesting 

observations that we believe further the understanding of the 

impact of collaborative software development on the structural 

quality of the codebase. We would be extremely keen on sharing 

that analysis with our peers and soliciting feedback on how to 

ensure that this research can make the most impact to the 

practitioners in the field. 

 

Figure 1 Tool-chain to extract and analyse revision based metrics. 

 

6. REFERENCES 
[1] Fenton, N. E., & Neil, M. 2000. Software metrics: roadmap. In 

Proceedings of the Conference on the Future of Software Engineering (pp. 

357-370). ACM 

[2] Chidamber, S. R, & Kemerer, C. F. 1994. A Metrics Suite for 

Object Oriented Design, IEE Transactions on Software Engineering, Vol. 

20, No. 6, June 1994, pp. 476-493 

[3] Li, W., Henry, S. 1993. Object-oriented metrics that predict 

maintainability. Journal of systems and software, 23(2), 111-122. 

[4] Basili, V. R., & Briand, L. C., & Melo, W. L. 1996. A 

validation of object-oriented design metrics as quality indicators. Software 

Engineering, IEEE Transactions on, 22(10), 751-761. 

[5] Ciolkowski, M., & Schlemmer, M. (2002). Experiences with a 

case study on pair programming. In Workshop on Empirical Studies in 

Software Engineering. 

[6] Madeyski, L. (2006). The impact of pair programming and 

test-driven development on package dependencies in object-oriented 

design—an experiment. In Product-Focused Software Process 

Improvement (pp. 278-289). Springer Berlin Heidelberg. 

[7] Laurie Williams, Bob Kessler (2000). The Effects of "Pair-

Pressure" and "Pair-Learning" on Software Engineering Education, 

Proceedings of the 13th Conference on Software Engineering Education 

& Training, p.59, March 06-08 

[8] Hanna, and Pekka Abrahamsson. "A multiple case study on the 

impact of pair programming on product quality." Proceedings of the 27th 

international conference on Software engineering. ACM, 2005 

 
Permission to make digital or hard copies of part or all of this work for 

personal or classroom use is granted without fee provided that copies are not 

made or distributed for profit or commercial advantage and that copies bear 

this notice and the full citation on the first page. Copyrights for third-party 

components of this work must be honored. For all other uses, contact the 

Owner/Author.  

Copyright is held by the owner/author(s). 

OpenSym '14 , Aug 27-29 2014, Berlin, Germany 

ACM 978-1-4503-3016-9/14/08. 

http://dx.doi.org/10.1145/2641580.26416



 

 


