
Natural Language Processing for MediaWiki:
The Semantic Assistants Approach

Bahar Sateli and René Witte
∗

Semantic Software Lab
Department of Computer Science and Software Engineering

Concordia University, Montréal, QC, Canada
[sateli,witte]@semanticsoftware.info

ABSTRACT
We present a novel architecture for the integration of Natural
Language Processing (NLP) capabilities into wiki systems.
The vision is that of a new generation of wikis that can
help developing their own primary content and organize their
structure by using state-of-the-art technologies from the NLP
and Semantic Computing domains. The motivation for this
integration is to enable wiki users – novice or expert – to
benefit from modern text mining techniques directly within
their wiki environment. We implemented these ideas based
on MediaWiki and present a number of real-world application
case studies that illustrate the practicability and effectiveness
of this approach.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Abstracting
methods, Indexing methods, Linguistic processing; H.5.2
[User Interfaces]: Natural language, User-centered design;
H.5.4 [Hypertext/Hypermedia]: Architectures, Naviga-
tion, User issues; I.2.1 [Applications and Expert Sys-
tems]: Natural language interfaces; I.2.7 [Natural Lan-
guage Processing]: Text analysis

1. INTRODUCTION
Back in 2007, we originally coined the idea of a ‘self-

aware wiki system’ that can support users in knowledge
management by applying natural language processing (NLP)
techniques to analyse, modify, and create its own content [7].
As an example, consider a wiki containing cultural heritage
documents, like a historical encyclopedia of architecture: the
large size and partially outdated terminology can make it
difficult for its user to locate knowledge, e.g., for a restoration
task on an old building: Couldn’t the wiki organize the
content by automatically creating a back-of-the book index
as another wiki page? Or even create a new wiki page from

∗corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’12 Aug 27–29, 2012, Linz, Austria
Copyright 2012 ACM 978-1-4503-1605-7/12/08 ...$15.00.

its content that answers a specific question of a user, asked
in natural language?

Or image a wiki used to curate knowledge for biofuel
research, where expert biologist go through research publica-
tions stored in the wiki in order to extract relevant knowledge.
This involves the time-consuming and error-prone task of
locating biomedical entities, such as enzymes, organisms, or
genes: Couldn’t the wiki identify these entities in its pages
automatically, link them with other external data sources,
and provide semantic markup for embedded queries?

Consider a wiki used for collaborative requirements en-
gineering, where the specification for a software product is
developed by software engineers, users, and other stakehold-
ers. These natural language specifications are known to be
prone for errors, including ambiguities and inconsistencies.
What if the wiki system included intelligent assistants that
work collaboratively with the human users to find defects like
this, thereby improving the specification (and the success of
the project)?

In this paper, we present our work on a comprehensive
architecture that makes these visions a reality: Based entirely
on open source software and open standards, we developed
an integration of wiki engines, in particular MediaWiki, with
the Semantic Assistants NLP web services framework [8].
The resulting system was designed from the ground up for
scalability and robustness, allowing anyone to integrate so-
phisticated text mining services into an existing MediaWiki
installation. These services embody ‘Semantic Assistants’
– intelligent agents that work collaboratively with human
users on developing, structuring, and analysing the content
of a wiki. We developed a wide range of wiki-based ap-
plications that highlight the power of this integration for
diverse domains, such as biomedical literature curation, cul-
tural heritage data management, and software requirements
specification.

The impact of integrating wikis with NLP techniques pre-
sented in this work is significant: It opens the opportunity
of bringing state-of-the-art techniques from the NLP and Se-
mantic Computing domains to wiki users, without requiring
them to have an concrete knowledge in these areas. Rather,
the integration will seamlessly provide them with NLP ca-
pabilities, so that no context switch is needed, i.e., the NLP
service invocation is carried out from within the wiki and
results are brought back to the user in his place of choice.
This way, a broad range of wiki users, from laypersons to
organization employees can benefit from NLP techniques,
which would normally require them to use specialized tools
or have expert knowledge in that area.

2. BACKGROUND
Before we delve into the details of our Wiki-NLP integra-

tion, we briefly introduce NLP and illustrate how various
techniques from this domain can help to improve a wiki user’s
experience. Afterwards, we describe the Semantic Assistants
framework, which we aim to integrate with MediaWiki in
order to provide these NLP services.

2.1 Natural Language Processing
Natural Language Processing (NLP) is a branch of com-

puter science that employs various Artificial Intelligence tech-
niques to process content written in natural language. One
of the applications of NLP is text mining – the process of de-
riving patterns and structured information from text – which
is usually facilitated through the use of frameworks, such as
the General Architecture for Text Engineering (GATE) [1].
Using these frameworks, sophisticated text mining applica-
tions can be developed that can significantly improve a user’s
experience in content development, retrieval, and analysis.
Here, we introduce a number of standard NLP techniques to
illustrate how they can support Wiki users.
Information Extraction (IE) is one of the most popular
applications of NLP. IE identifies instances of a particular
class of events, entities or relationships in a natural language
text and creates a structured representation of the discovered
information. A number of systems have been developed for
this task, such as OpenCalais,1 which can extract named
entities like Persons and Organizations within a text and
present them in a formal language, e.g., XML or RDF2. These
techniques are highly relevant for wikis, where users often
deal with large amounts of textual content. For example,
using an IE service in a wiki can help users to automatically
find all the occurrences of a specific type of entity, such as
‘protein’, and gather complementary information in form of
metadata around them.
Content Development. In addition to generating meta-
data from existing content in the wiki, an NLP system can
also be used in some instances to create the primary content
itself. For example, in Wiktionary,3 where information is
highly structured, various techniques from computational
linguistics can help to automatically populate the wiki by
adding new stubs and their morphological variations. Fur-
thermore, the NLP system can analyse the wiki content to
find the entries across different languages and automatically
annotate them or cross-link their pages together.
Automatic Summarization. Consider a wiki user who
wants to create a report on a specific topic from the available
related information in a wiki with the size of Wikipedia. For
this task, the user has to start from one page, read its content
to determine its relevance and continue browsing through
the wiki by clicking on page links that might be related
to his topic in mind. This manual approach is not only a
time-consuming and tedious task, but also often results in
neglection of information due to the existence of isolated
wiki pages. In such a situation, where a user’s information
need is dispersed over multiple documents, NLP techniques
can provide him with generic or focused summaries: The
wiki user can collect the pages of interest or provide a topic

1OpenCalais, http://www.opencalais.com/
2Resource Description Framework, http://www.w3.org/
RDF/
3Wiktionary, http://en.wiktionary.org/wiki/Main Page

keyword, and ask the summarization service to generate a
summary with a desired length from the available information
on that topic within the wiki.
Question Answering (QA). The knowledge stored in
wikis, for example, when a wiki is used inside an organi-
zation to gather technical knowledge from employees, is a
valuable source of information that can only be queried via a
keyword search or indices. However, using a combination of
NLP techniques, a wiki can be enhanced to allow its users to
pose questions against its knowledge base in natural language.
Then, after “understanding” the question, NLP services can
browse through the wiki content and bring back the extracted
information or a summary of a desired length to the user.
QA systems are especially useful when the information need
is dispersed over multiple pages of the wiki, or when the
user is not aware of the existence of such knowledge and the
terminology used to refer to it.

2.2 Semantic Assistants Framework
The open source Semantic Assistants framework [8] is an

existing service-oriented architecture that brokers context-
sensitive NLP pipelines as W3C standard web services.4 The
goal of this framework is to bring NLP techniques directly
to end-users, by integrating them within common desktop
applications, such as word processors, email clients, or web
browsers. The core idea of the Semantic Assistants approach
is to take the existing NLP frameworks and wrap concrete
analysis pipelines so that they can be brokered through
a service-oriented architecture, and allow desktop clients
connected to the architecture to consume these NLP services
via a plug-in interface.

NLP Service 1

NLP Service 2

NLP Service n

NLP Service
Result

...

Client

− Calling an NLP Service

Focused
Summarization

− Runtime Parameters

Word Processor

Server

Figure 1: The Semantic Assistants service execution
workflow [8]

NLP pipelines are stored in a repository in the Semantic
Assistants architecture. They are formally described using
the Web Ontology Language (OWL),5 which allows the Se-
mantic Assistants web server to dynamically discover them
and reason about their capabilities before recommending
them to the clients. Any service deployed in the reposi-
tory is automatically available to all clients connected to the
architecture, using standard WSDL6 interface descriptions.

The integration of new clients with the architecture is
achieved via designing plug-ins, which is facilitated by a
Client-Side Abstraction Layer (CSAL). CSAL is essentially
a Java Archive library of common communication and data

4Web Services Architecture, http://www.w3.org/TR/
ws-arch/
5Web Ontology Language (OWL), http://www.w3.org/2004/
OWL/
6Web Services Description Language (WSDL), http://www.
w3.org/TR/wsdl

http://www.opencalais.com/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://en.wiktionary.org/wiki/Main_Page
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/2004/OWL/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

<saResponse>
<annotation type="Person" annotationSet="Annotation" isBoundless=

"false">
<document url="http://localhost/Test_Page">

<annotationInstance content="Mary" start="0" end="4">
<feature name="gender" value="female"/>

</annotationInstance>
</document>

</annotation>
<annotation type="Location" annotationSet="Annotation"

isBoundless="false">
<document url="http://localhost/Test_Page">

<annotationInstance content="Canada" start="14" end="20">
<feature name="locType" value="country"/>

</annotationInstance>
</document>

</annotation>
</saResponse>

Figure 2: Semantic Assistants server response struc-
ture example

transformation functionality that can be reused by clients
to communicate with the Semantic Assistants server and
transform NLP results to other useful data types. When
a client has been integrated into the Semantic Assistants
architecture, all implementation details of the NLP integra-
tion are hidden from the user – from their point of view
they only see context-sensitive assistants relevant for their
task at hand. Currently, the Semantic Assistants architec-
ture natively supports NLP pipelines developed based on
the GATE framework, but also provides for the execution
of pipelines based on OpenNLP7 and UIMA8 through their
GATE integration.

As shown in Figure 1, following each NLP service execu-
tion in the Semantic Assistants server, results are gathered
and passed back to the invoking client. NLP service results
can be of any format, depending on the concrete compo-
nents deployed in the pipeline. Some services might produce
metadata in form of semantic annotation, while others may
produce new files of arbitrary formats. Nevertheless, the
Semantic Assistants server eventually transforms the results
into a standalone XML message. The client then, directly or
through using the CSAL libraries, parses the XML response
and presents the results to its users. Using a uniform XML
message structure keeps the implementation open for alterna-
tive output formats and allows various output formats to be
added at runtime. Figure 2 shows the semantic annotations
found by an Information Extraction (IE) service invoked
on the text “Mary lives in Canada.” As can be seen in the
response, the IE service found one “Person” (with gender:
female) and one “Location” entity (with type: country).

3. DESIGN
Following the description of the application of NLP services

in wiki systems and how the Semantic Assistants framework
provides such capabilities as web services, we now have to
define our research question: Is it possible to create an inte-
gration architecture that would allow different wiki engines
to benefit from NLP techniques offered by the Semantic
Assistants framework?

Such an architecture should enable wiki systems to benefit
from NLP techniques, without the need to have a concrete

7OpenNLP, http://opennlp.sourceforge.net
8UIMA, https://uima.apache.org/

W
eb

 S
erver

Wiki Engine ?

Semantic AssistantsWiki System

Service Information

Service Invocation

Database

Figure 3: Towards Wiki-NLP integration

knowledge of their implementation, nor requiring extensive
manipulation to their engines. This means that the integra-
tion of NLP services must not be hard-coded on the NLP
providing system or the wiki engine – rather, an abstraction
layer is required between the two that provides a common
ground for communication. To this end, first we define a set
of abstract requirements for such a Wiki-NLP integration.

3.1 Requirements
The quick flow of content development and low learning

curve associated with wikis are among the factors that have
a drastic effect on their adoption as collaborative document
management systems. As reviewed in Wikipatterns [4], wikis
are often used as an authoring environment for externalizing
organizational or personal knowledge. Therefore, wiki users
in real-life vary from laypersons to highly-technical employees
with various backgrounds, and limited knowledge in the field
of software or language engineering or even lack thereof.
Having this in mind, we hereby state the requirements of the
integration of NLP capabilities inside a wiki environment.
NLP Service Independence (R1). NLP services are used
in various domains, such as biology, software engineering or
e-learning, and have different implementations. While some
of these NLP services have direct real-world applications,
others can serve as new inputs to larger and more complex
tasks. Thus, irrespective of the NLP services’ concrete imple-
mentation, the integration must offer them within a single
unique interface in the wiki.
Read Content from Wiki (R2). The system must be
able to pull out content from the wiki’s database in order to
provide the NLP pipelines with input documents. Based on
the available wiki capabilities, the integration must be able
to retrieve not only the main content of a page, but also its
associated metadata, such as revisions, editor information,
discussion page content and semantic annotations.
Write Results to Wiki (R3). The integration must be
able to write the analysis results back to the wiki’s database
to make them persistent. Also, the integration must be
flexible in terms of where it should write the results. For
example, users may choose to store the results of content
development services embedded in a page’s main content,
while having the associated metadata generated by NLP
services stored in the page’s discussion section.
Seamless Integration (R4). Employing NLP techniques
on wiki content must not largely deviate from the established
usage patterns of wikis. This means that NLP capabilities
must be integrated within the wiki’s user interface that the
users are already familiar with.
Easy Deployment (R5). In order to benefit from NLP
techniques offered by the Wiki-NLP integration, users must
not need to apply major changes to the wiki engine or to

http://opennlp.sourceforge.net
https://uima.apache.org/

the means to access the wiki, i.e., their Web browsers. This
requirement is derived from the fact that wiki end-users are
diverse in their background knowledge and no assumption
about their knowledge in software or language engineering
should be made.
Flexible Response Handling (R6). According to the Se-
mantic Assistants architecture described in Section 2.2, NLP
services produce different types of output, such as semantic
metadata in form of annotations or new files. The Wiki-NLP
integration must be able to accordingly transform, store and
present the results to users in a way that is distinguishable
from the wiki’s original content.
Collection-based Analysis (R7). An implicit goal of the
Wiki-NLP integration is automating tasks that are currently
done manually through the traditional ways that wikis pro-
vide. In some instances, a user’s information need is scattered
across multiple pages in a wiki. Satisfying such needs by
hand is a cumbersome and error-prone task. Therefore, users
must be able to collect pages of interest and run an NLP
service on the collection at once.
Proactive Service Execution (R8). The system must
be able to perform NLP analysis in a proactive and event-
based manner. For example, when the integration is used to
create a back-of-the-book index of a wiki content, it should
be able to perform an automatic index generation every time
a change is applied to the wiki content.

3.2 Developed Solution
Neither the wiki system nor the Semantic Assistants archi-

tecture can solely fulfil all of the requirements we postulated
in the previous section. Therefore, we have to design an
architecture that would allow the two systems to commu-
nicate with each other while keeping the modifications on
the wiki engine to a minimum, in order to increase the in-
tegration acceptability. Our Wiki-NLP integration solution
is thus a collaborative approach, combining the power of
a light-weight MediaWiki extension and a novel server-side
wiki component in the Semantic Assistants framework. The
main idea in this approach, as shown in Figure 4, is to divide
the responsibilities between the two systems based on their
capabilities and provide them with a common ground for
communication. The MediaWiki extension bears the respon-
sibility of wiki-specific tasks, such as patrolling wiki content
changes, while the server-side wiki component encompasses
functionalities that are needed to employ NLP capabilities
within a wiki system, such as presenting the user interface
or handling service invocation requests.

3.2.1 The Server-side Wiki Component
The server-side wiki component acts as an intermediator

between the Semantic Assistants server, the MediaWiki en-
gine and the user’s browser. It provides a centralized entry
point for handling service requests. In other words, all the
requests from the user’s browser are sent to this component
and it will in turn provide the suppliant, e.g., the browser,
with the outcome of the demanded action, such as the ca-
pability to inquire about and invoke available NLP services.
The wiki component has four main responsibilities:
I. Pre-processing of requests. Every service request re-
ceived by the wiki component is first validated before being
dispatched to the business logic. Here, the wiki compo-
nent checks whether the wiki engine sending the request is
supported by the integration and then validates the user

Browser

E
xten

sio
n

W
eb

 S
erver

MediaWiki
Engine

W
iki C

o
m

p
o

n
en

t

JavaScript

Wiki System Semantic Assistants

Service Information

Service Invocation

Database

Figure 4: Wiki-NLP integration – High-level design

credentials and the request parameters for its completeness.
Pre-processing the requests provides a preemptive behaviour
against malicious or faulty requests to be sent to the Semantic
Assistants server.
II. Dispatching requests to the business logic. Follow-
ing the pre-processing phase, the wiki component dispatches
the request to the business logic that is responsible for exe-
cuting the user request. The business logic is the unit that
transforms the user request to a concrete service call to the
Semantic Assistants server interface. The wiki component is
then responsible for gathering the results from the server and
prepares them for the client by generating the corresponding
wiki markup.
III. Controlling the display flow. Based on the status
of the pre-processing phase or business logic execution, the
wiki component maps the request to a chosen logical display.
For example, based on the user request status, the wiki
component decides whether to present the user with a login
page, the integration user interface or delegate the request to
the business logic and update the wiki page with the results.
Also, if an exception occurs during the service execution, the
component stores the exception in the request object and
forwards the display to a web page, providing the user with
detailed information about the exception.
IV. Maintaining the ontology model. As we will describe
in the following section, wiki instances are introduced to the
integration through their ontologies. The wiki component is
responsible for keeping an in-memory model of the available
wiki ontologies by parsing their formal descriptions. When
the model is formed in the wiki component, it can then
be used at runtime to reason about each wiki’s capabilities.
For example, a typical query to the ontology model can be

“What are the namespaces in this wiki engine?” or “What
file formats does the wiki engine allow to be uploaded to the
database?”. The ontology can also be used to populate the
user interface of the integration and validate user requests
against an underlying wiki engine.

3.2.2 The Client-side Wiki Extension
As we stated earlier, the main purpose of designing a

MediaWiki extension is to provide functionalities that cannot
be offered through the wiki component alone, such as the
proactive service execution described in Requirement R8.
Since the extension is installed on the wiki and has direct
access to its database, it can patrol content changes in the
wiki and create dynamic service requests to the server-side

Thing

Metadata

has subclass

Namespace

has subclass

cu:Artifact

has subclass

cu:Language

has subclass

cu:Format

has subclass

History

has subclass

cu:Tool

has subclass

Page

has subclass

Resource

has subclassWiki

has subclass

has belongsTo has

Content Page

has subclass

Talk Page

has subclass

has

hashas

has

cu:Natural Language

has subclass

cu:Artificial Language

has subclass

cu:Programming Language

has subclass

Wiki Markup

has subclass

Figure 5: Wiki Upper Ontology

wiki component to analyze the new content or flag the already
existing results as outdated when the original content of a
page changes. Also, installing an extension on MediaWiki
is a fairly simple task that is done with one or two lines of
code, which makes the deployment of the NLP integration
easier than requiring individuals to install an application on
their machines or adding a plug-in to their browsers (R5).

3.3 A Semantic Wiki Meta-Model
We also need to make a design decision about how different

MediaWiki instances can work with a single unique interface.
Although all instances are based on the same core engine, they
still may be of different versions or have different capabilities.
For example, a MediaWiki engine that has the Semantic
MediaWiki extension9 installed can consume and export
semantic metadata in form of RDF triples, while a traditional
MediaWiki instance cannot. Towards this end, we adopted
a semantics-based approach, in which different wiki engines
are introduced to the integration architecture through their
ontology files. By using OWL as the ontology language to
formally describe a wiki, the integration does not need to
know about their concrete implementation; rather it uses
automatic reasoning on their ontologies to discover each
wiki’s structure and capabilities. To facilitate the process
of ontology definition, we have designed a generic upper
ontology for wiki systems shown in Figure 5, which also
includes concepts defined in the Semantic Assistants upper
ontology [8] – a multi-purpose ontology that describes five
core concepts to model the relationships between users, their
tasks, the artifacts involved and their format and language.

The wiki upper ontology is designed using Protégé10 and
reflects the concepts that are common to all wiki engines.
Thus, for the MediaWiki engine, we merely have to instan-
tiate the upper ontology manually or automatically using
special scripts to define the concrete structure of each wiki

9Semantic MediaWiki extension, http://www.mediawiki.org/
wiki/Extension:Semantic MediaWiki

10Protégé, http://protege.stanford.edu/

Table 1: Concepts in the wiki upper ontology
Concept Description Example
Wiki wiki engine MediaWiki
Page Wiki elements encompassing

textual content
“Semantic Web”

Namespace Category names to differenti-
ate pages at a high level

“Help”, “Project”

Resource Files with arbitrary formats Picture.jpg
Metadata Metadata associated with

wiki pages
History, Seman-
tic Annotations

Wiki Markup Ontological representation of
wiki syntax

MediaWiki
Markup

instance, e.g., its available namespaces. Table 1 summarizes
the concepts of the wiki upper ontology.

4. IMPLEMENTATION
We now describe how the above design is transformed

into the complete implementation architecture as shown in
Figure 6.

4.1 Semantic Assistants MediaWiki Extension
The Semantic Assistants MediaWiki extension is a light-

weight extension written in PHP that modifies the wiki’s
native navigational menu. As shown in Figure 7, the body of
the extension consists of only a few lines of code that adds
a new menu item to the wiki, which provides access to the
Semantic Assistants NLP user interface (R4).

1 <?php
2 function wfToolboxLink(&$monobook) {
3 # Create a link in the menu pointing to the Wiki−NLP servlet
4 print (" <a href=\"http://server.example.com:8080/Wiki-

NLP/SemAssistServlet?action=proxy\">Semantic
Assistants");

5 return true ;
6 }
7 ?>

Figure 7: Semantic Assistants MediaWiki extension
source code and resulting view

The extension also imports six MediaWiki templates11 to
the wiki that are used to customize the presentation of NLP
results in wiki pages. Templates in MediaWiki are standard
wiki pages whose content is designed to be embedded inside
other pages. MediaWiki allows various parameters to be
passed to a template when they are transcluded in a page
to produce dynamic contents or different behaviour. Upon
a successful NLP service execution, the templates are em-
bedded in the selected wiki page and populated from the
retrieved response (R6). This way, while the data model of
the results is decided by the wiki component’s business logic,

11MediaWiki Templates, http://www.mediawiki.org/wiki/
Help:Templates

http://www.mediawiki.org/wiki/Extension:Semantic_MediaWiki
http://www.mediawiki.org/wiki/Extension:Semantic_MediaWiki
http://protege.stanford.edu/
http://www.mediawiki.org/wiki/Help:Templates
http://www.mediawiki.org/wiki/Help:Templates

B
row

ser

Tier 3: Analysis and Retrieval Tier 4: ResourcesTier 2: Presentation and InteractionTier 1: Clients

D
esktop A

pplication

NLP Subsystem

Wiki−SA Connector

Semantic Assistants Server

Wiki−NLP Integration

NLP Service Connector

Wiki System

W
eb S

erver
W

eb S
erver

W
eb S

erver

Client−Side Abstraction Layer

Database Interface

Rendering Engine

Service Invocation

Service Information

Graphical User Interface

User Interface Module

Wiki Helper Module

P
lug−in A

P
I Service Broker Module

Language Services

Information Extraction

Automatic Summarization

Question Answering

Index Generation

Information Retrieval

Language

Service

Descriptions

Indexed

Documents

Indexed

Documents

Wiki

Ontologies

Database

Figure 6: The new Wiki-NLP integration module in the Semantic Assistants architecture

e.g., semantic annotations, their presentation style can be
modified on the wiki without requiring any changes to the
integration architecture.

4.2 The Wiki-SA Connector
The Wiki-SA Connector component, shown in Figure 6,

is technically an HTTP proxy sever written using the Java
Servlet12 technology. As mentioned earlier, it acts as an
intermediator between the Semantic Assistants server, the
wiki system and the user’s browser by intercepting their
communication. For each of these three endpoints, there
exists a module in the servlet, specifically concerned with
the endpoint’s business logic. This way, having separate
modules allows the sub-components to evolve and extend
independently.

Service Broker Module.
The service broker module is the connecting point of the

integration to the Semantic Assistants server. Every service
execution request that is received by the integration compo-
nent is translated into a Java method call in this module,
which in turn triggers the execution of one or multiple NLP
services in the Semantic Assistants server.

User Interface Module.
This module is responsible for generating the integration

user interface within a wiki environment. Since wikis are
accessible through Web browsers, this module is designed to
generate an HTML representation of the Semantic Assistants
user interface and inject it to the the user’s browser using
JavaScript. Figure 8 shows how the generated user interface
is added to a wiki page to give its users the impression that
they are still interacting with the wiki’s native interface.
Through this user interface, users can find the Available
Assistants (bottom left) and invoke arbitrary NLP services
by dynamically querying the Semantic Assistants repository
of service descriptions. This way, any language service that

12Java Servlet API, http://download.oracle.com/docs/cd/
E17802 01/products/products/servlet/2.5/docs/servlet-2
5-mr2/

is offered by a Semantic Assistants server is presented in the
user interface to the user (R1). Moreover, the generated user
interface allows users to combine multiple pages of the wiki
in a collection, i.e., a list of user-selected page URLs, and
invoke the NLP service on them at once (R7).

Wiki Helper Module.
The wiki helper module encompasses the classes required

for communicating with the MediaWiki engine. The classes
in this module are responsible for providing the NLP pipelines
with input data by reading wiki pages from the database
(R2) and eventually transforming the results to their cor-
responding template markup and storing them in the wiki
database (R3).

We stated in Section 3.2.1 that the Wiki-SA Connector is
responsible for maintaining and reasoning on the available
wiki ontologies. This process is achieved by special ontology
keeper classes that upon each servlet bootstrapping, run
over the wiki repository OWL files and create an in-memory
model of the wikis, by parsing them using Protégé’s OWL
libraries. This module also provide reasoning capabilities on
wiki ontologies using the SPARQL13 language.

4.3 Storing and Presenting NLP Results
The ultimate goal of our Wiki-NLP integration is to create

a “self-aware” wiki that can develop and organize its content.
Therefore, unless the results from NLP services are presented
to users or become persistent in the wiki, the integration
would not add any valuable advancement to the current state
of the underlying wiki system. Transforming the NLP service
results to wiki markup is a task handled by special parser
classes in the wiki helper module described in the previous
section.

Following a successful NLP service execution, results are
passed from the Semantic Assistants server to the service
broker module in form of an XML message, as shown in the
example in Figure 2. The broker module then interprets
the server’s XML response and parses the message into an

13SPARQL Query Language for RDF, http://www.w3.org/
TR/rdf-sparql-query/

http://download.oracle.com/docs/cd/E17802_01/products/ products/servlet/2.5/docs/servlet-2_5-mr2/
http://download.oracle.com/docs/cd/E17802_01/products/ products/servlet/2.5/docs/servlet-2_5-mr2/
http://download.oracle.com/docs/cd/E17802_01/products/ products/servlet/2.5/docs/servlet-2_5-mr2/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

MediaWiki

Native

Interface

Wiki−NLP

Interface

Integration

NLP Results

Embedded

in Wiki Page

Figure 8: The Wiki-NLP integration user interface embedded in a wiki page

Database...

W
iki P

arsers

MarkupXML
Wiki

W
eb S

erver

Java Object
C

S
A

L Libraries
Semantic

MediaWiki

MediaWiki

Creole

R1 R2 R3 ...

Wiki Engine

Wiki SystemSemantic Assistants Wiki−SA Connector

Figure 9: Transforming NLP service results to
MediaWiki markup

array of Java objects. The service result objects are then
transformed to MediaWiki markup by the wiki helper classes
and prepared for the templating mechanism.

The templating mechanism, illustrated in Figure 10, is
the process of embedding service results into MediaWiki
templates for presentation. This mechanism separates the
data model from its presentation and provides the opportu-
nity to create multiple views for a single model for different
purposes. Templating is a collaborative task performed by
the Semantic Assistants Wiki-NLP component and the wiki
extension. The wiki helper module prepares the markup
by placing the results within their corresponding templates
and storing them in the wiki’s database. Once the wiki
page is viewed by the user, the templates installed on the

wiki by the Semantic Assistants extension will render the
template markup to generate appropriate HTML representa-
tions for NLP results, such as tables or lists. Figure 9 shows
the workflow of the transformation of server XML response
messages to MediaWiki markup. As shown in the picture,
the wiki helper module has a modular structure and uses a
Factory Pattern [2] to generate wiki markup, meaning that
the format of the results can be determined at runtime. This
way, different parsers can be added to the integration that
will produce markup for MediaWiki, Semantic MediaWiki
or Creole.14

The next important task is to store the results in the wiki,
so that they become persistent and can be used later on.
This is important because, according to Requirement R8,
the service execution can occur proactively and does not
necessarily require user interaction. In such cases, service
results, e.g., new generated content, has to be stored in the
wiki so that users can access them later.

For this purpose, the classes in the wiki helper module
can use the MediaWiki API15 or rely on third party libraries
to connect to the wiki database. Currently, our Wiki-NLP

14Creole, http://www.wikicreole.org/
15MediaWiki API, http://www.mediawiki.org/wiki/API:
Client code

http://www.wikicreole.org/
http://www.mediawiki.org/wiki/API:Client_code
http://www.mediawiki.org/wiki/API:Client_code

Figure 10: Templating mechanism for semantic an-
notations

integration uses the Java Wiki Bot Framework16 (JWBF),
an open source framework for MediaWiki that allows the
integration to connect to any MediaWiki engine, read wiki
page information and modify their content.

4.4 Wiki-NLP Interaction Example
After an exhaustive description of the Wiki-NLP integra-

tion, in this section we illustrate an example scenario of how
a wiki user interacts with the Wiki-NLP integration. The
goal of our user in this scenario is to find the named entities
in a wiki page as shown in Figure 8. The communication
flow of this scenario is illustrated in Figure 11.

First, our user invokes the integration user interface by
clicking on the ‘Semantic Assistants’ menu item (Figure 8,
‘toolbox’ menu), which sends a request to the integration
servlet configured in the extension file (Figure 7). Once the
request is processed, the user interface depicted in Figure 8
is presented to the user that allows him to see a list of
available NLP services in the Semantic Assistants server and
add the wiki page URL to the collection. Next, the user
invokes the “Person and Location Extractor” service, which
can extract named entities from a text and provide additional
information, such as gender of a person or type of a location.

The service invocation results in sending an HTTP request
to the integration servlet that contains the name of the
selected service and the name of the wiki page. Once the
request is validated by the servlet, it is then prepared for the
service execution. In order to send the content of the wiki
page to the designated pipeline, the servlet retrieves the list
of page URLs from the collection and asks the wiki helper
module to use the JWBF bot to read the content of each
page from the wiki’s database. The content is then cleaned
up, removing noise, such as wiki markup and comments, and
returned to the servlet. Using the service broker module, the
servlet then makes a service execution call to the Semantic
Assistants server by defining the name of the service as the
“Person and Location Extractor” and the input as the wiki
pages’ content. Once the NLP service is finished with the

16Java Wiki Bot Framework, http://jwbf.sourceforge.net/

Figure 11: Communication flow in the Wiki-SA con-
nector component

analysis, the Semantic Assistants server generates an XML
output, similar to the one shown in Figure 2, that contains
the detected annotations as the extracted named entities,
their exact character offsets in the text, as well as any other
additional information found by the pipeline. The recipient
of this XML message is the servlet, which parses the XML
message into Java objects and sends them to the wiki helper
module to be transformed to MediaWiki markup. The parser
classes in the wiki helper module then place the extracted
annotations in the Semantic Assistants annotation template
(Figure 10) and let the JWBF bot write them back to the
wiki. The servlet now embeds a completion of service message
inside an HTTP response object and sends it to the browser
to be displayed to the user. Once the user refreshes the wiki
page, he can see the newly generated table that contains the
Person and Location Extractor service results (Figure 8).

5. APPLICATIONS
In this section, we describe how we used the Wiki-NLP

integration in a number of real-world projects.

5.1 Cultural Heritage Data Management
Cultural heritage data is the legacy of artifacts of a society

inherited from the past, such as books. To preserve these
artifacts, they are often digitized and stored in nationally
and internationally distributed databases. We previously de-
veloped a custom wiki integration for this scenario, the Durm
Wiki,17 where we demonstrated how modern semantic tech-
nologies offer the means to make these heritage documents
accessible by transforming them into a semantic knowledge
base [9]. Now we are able to offer the same NLP capabil-
ities that had been implemented in the Durm wiki using
our generic Wiki-NLP integration architecture, in addition
to all the other services made available through the general
Semantic Assistants framework.

17Durm Wiki, http://durm.semanticsoftware.info/wiki

http://jwbf.sourceforge.net/
http://durm.semanticsoftware.info/wiki

Figure 12: Automatic back-of-the-book index gener-
ation for wiki content

As an example NLP service, Figure 12 shows the ‘back-of-
the-book’ style index page in the wiki that has been generated
by our German Durm Indexer pipeline. The presence of an
index page in the wiki that is automatically maintained not
only aggregates information on a high level and helps users
to find information ‘at a glance’, but also enables them to
“discover” interesting concepts or entities that they did not
know were present in the wiki. In our application scenario,
a historical encyclopedia of architecture, this index helped
domain experts to locate information that they could not
find through information retrieval methods: since the 100-
year old heritage documents contain outdated terminology
no longer in use, full-text search was not sufficient to discover
concepts [9]. Additional services provided summaries of wiki
content based on a specific question [9]. These ideas can
be applied to other heritage data projects and knowledge
management wikis in general.

5.2 Software Requirements Engineering
Wikis, as an affordable, lightweight documentation and

distributed collaboration platform, have demonstrated their
capabilities in distributed requirements engineering. Software
requirements specifications (SRS) documents, diagrams and
images are typically authored in a collaborative manner
by various stakeholders and stored in wikis as articles and
resources. A requirements specifications document containing
precise definitions of what stakeholders want is critical to the
design of “the right product” and consequently, the success
of a project. To manage SRS, we developed ReqWiki,18

which combines Semantic MediaWiki forms and templates to
structure use case-based requirements engineering, following
the Unified Process (UP) methodology. Using the Wiki-
NLP integration, users can request Semantic Assistants to
help them improve their specifications. Examples include
performing automatic quality assurance on the content of the
SRS documents in order to find and remove defects, such as
Weak Phrases, Options, and Passive voice, since the presence
of these defects are usually indicative of the relative ambiguity
and incompleteness of an SRS document. Figure 13 shows
the results of a SRS quality assurance assistant that has
been executed on a Use Case template inside the wiki. The
requirements engineer can then investigate the individual
defects and fix them by editing the wiki’s content.

In a case study with software engineering students, this

18ReqWiki, http://www.semanticsoftware.info/reqwiki

Figure 13: Quality assurance of SRS documents

NLP integration significantly improved the quality of the re-
sulting requirements documents, compared to a wiki without
this integration. Furthermore, a usability study showed that
users unfamiliar with NLP technology can easily apply the
offered Semantic Assistants [5].

5.3 Biomedical Literature Curation
Biomedical literature curation is the process of manually

refining and updating bioinformatics databases. The data
for curation is generally gathered from the domain literature,
e.g., scientific papers, journal articles and domain-specific
websites like PubMed19 and provided to curators – domain
experts – who manually browse through the data and ex-
tract domain knowledge from the literature. When a wiki
system is filled with literature, NLP pipelines can greatly
help with the labour-intensive task of curation. Figure 14
shows GenWiki [6], a wiki developed for biocuration in lig-
nocellulose research, where NLP pipelines support domain
experts by automatically extracting entities, such as enzymes
or organisms, from full-text research papers. It also provides
additional information through semantic enrichment, such as
the systematic name of an enzyme entity or its corresponding
webpage in the BRENDA20 database.

Figure 14: Text mining of biomedical literature

In addition to entity detection, the Wiki-NLP integra-
tion also populates the wiki with semantic metadata that is
generated by the NLP services. For instance, in the above
example for each enzyme entity that is found by the pipeline,

19PubMed, http://www.ncbi.nlm.nih.gov/pubmed/
20BRENDA Enzyme Database, http://www.brenda-enzymes.
info/

http://www.semanticsoftware.info/reqwiki
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.brenda-enzymes.info/
http://www.brenda-enzymes.info/

{{#ask: [[hasType::Enzyme]]
| ?Enzyme = Enzyme Entities Found
| format = table
| headers = plain
| default = No pages found!
| mainlabel = Page Name

}}

Figure 15: Semantic entity retrieval

the integration will semantically represent it using Semantic
MediaWiki markup [[hasType::Enzyme]], which is inter-
nally interpreted as an RDF triple by the Semantic Media-
Wiki parsers. The generated semantic metadata can then be
exploited by users for entity retrieval purposes or exported
for external application use. Figure 15 shows how wiki users
can query for available wiki pages that contain a specific type
of entity, namely Enzymes, and directly navigate to their
pages in the wiki.

In a user study with domain experts, this NLP integration
reduced the time required to curate research papers in the
wiki by almost 20% [5].

6. RELATED WORK
NLP-enhanced wikis refers to wiki systems that benefit

from employing NLP techniques on their content, either
provided as an extension to their architecture or tightly inte-
grated in their engine. Such wikis aid their users with content
development and management by employing language ana-
lytics solutions on the wiki content.

Currently, the only existing NLP-enhanced wiki we are
aware of is Wikulu [3]. Wikulu proposes an architecture
to support users in their tasks of adding, organizing and
finding content in a wiki by applying NLP techniques. The
major focus of Wikulu is helping users to organize a wiki’s
content. The authors analyze different types of user interac-
tions corresponding to these tasks and aim to improve the
user experience by providing suggestions on where to add or
how to organize content. The NLP integration in Wikulu is
implemented as a proxy server that needs to be enabled on
the user’s browser.

In contrast to Wikulu and our previous work in the Durm
project [9], in this paper we offer a general architecture
that allows any wiki to benefit from various NLP techniques
brokered via the Semantic Assistants framework. In other
words, our Wiki-NLP integration is not only NLP service
independent, but also offers a flexible and easily extensible
design for the integration of various wiki engines with NLP
capabilities. Unlike the Durm project, our architecture does
not use an external stand-alone application, rather it brings
the NLP capabilities within the wiki environment. Finally, in
our architecture, employing NLP techniques on wiki content
does not necessarily require user interaction and can be
performed proactively, e.g., on a time or event basis.

7. CONCLUSION
Our goal was to develop an architecture for aiding wiki

users in time-consuming and labour-intensive tasks, through
the help of automatic text mining services. The Wiki-
NLP integration architecture we propose provides a wiki-
independent user interface that is populated dynamically
based on the capabilities of the underlying engine. The in-
tegration of wiki engines into the architecture is facilitated
through the use of ontologies. This way, we created an ex-
tensible architecture that allows more wikis to be added in
the future, without the need to change any code in their
implementation, allowing both sides to evolve independently.
The complete architecture is available under standard open
source licenses at http://www.semanticsoftware.info.

By providing a direct and seamless integration of NLP
capabilities, we are now able to help wiki users to overcome
common problems, such as information overload or poor
organization. This way, the organized structure of wikis not
only increases their acceptability and usability as a powerful,
yet easy-to-use collaborative documentation platform, but
also allows their users to focus on their main task in the
wiki, rather than spending time on going through the usually
massive amount of available unstructured information.

Finally, our Wiki-NLP integration lays the groundwork for
a multitude of new projects. More and more wikis are created
everyday to support various user needs. This means that,
the more wikis are used in various domains, the more NLP
services are demanded. Using this architecture, wikis can
access NLP techniques that are beneficial to their content.
At the same time, more data becomes available for NLP
developers to create and train more intelligent services.

8. REFERENCES
[1] H. Cunningham et al. Text Processing with GATE (Version

6). University of Sheffield, Dept. of Computer Science, 2011.

[2] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[3] J. Hoffart, T. Zesch, and I. Gurevych. An architecture to
support intelligent user interfaces for Wikis by means of
Natural Language Processing. In International Symposium on
Wikis (WikiSym ’09), Orlando, FL, USA, 25–27 Oct. 2009.

[4] S. Mader. Wikipatterns – A practical guide to improving
productivity and collaboration in your organization. Wiley
Publication, 2008.

[5] B. Sateli. A General Architecture to Enhance Wiki Systems
with Natural Language Processing Techniques. Master’s
thesis, Concordia University, Montréal, QC, Canada, 2012.

[6] B. Sateli, C. Murphy, R. Witte, M.-J. Meurs, and A. Tsang.
Text Mining Assistants in Wikis for Biocuration. In 5th
International Biocuration Conference, page 126, Washington
DC, USA, April 2012. International Society for Biocuration.

[7] R. Witte and T. Gitzinger. Connecting Wikis and Natural
Language Processing Systems. In WikiSym ’07: Proceedings
of the 2007 International Symposium on Wikis, pages
165–176, New York, NY, USA, 2007. ACM.

[8] R. Witte and T. Gitzinger. Semantic Assistants –
User-Centric Natural Language Processing Services for
Desktop Clients. In 3rd Asian Semantic Web Conference
(ASWC 2008), volume 5367 of LNCS, pages 360–374.
Springer, 2008.

[9] R. Witte, T. Kappler, R. Krestel, and P. C. Lockemann.
Integrating Wiki Systems, Natural Language Processing, and
Semantic Technologies for Cultural Heritage Data
Management. In C. Sporleder, A. van den Bosch, and
K. Zervanou, editors, Language Technology for Cultural
Heritage, pages 213–230. Springer, 2011.

http://www.semanticsoftware.info

	Introduction
	Background
	Natural Language Processing
	Semantic Assistants Framework

	Design
	Requirements
	Developed Solution
	The Server-side Wiki Component
	The Client-side Wiki Extension

	A Semantic Wiki Meta-Model

	Implementation
	Semantic Assistants MediaWiki Extension
	The Wiki-SA Connector
	Storing and Presenting NLP Results
	Wiki-NLP Interaction Example

	Applications
	Cultural Heritage Data Management
	Software Requirements Engineering
	Biomedical Literature Curation

	Related Work
	Conclusion
	References

